use core;
use crate::{c, init, polyfill};
#[cfg(target_endian = "little")]
macro_rules! u32x2 {
    ( $first:expr, $second:expr ) => {
        ((($second as u64) << 32) | ($first as u64))
    };
}
mod sha1;
#[derive(Clone)]
pub struct Context {
    state: State,
    
    
    
    completed_data_blocks: u64,
    
    pending: [u8; MAX_BLOCK_LEN],
    num_pending: usize,
    
    pub algorithm: &'static Algorithm,
}
impl Context {
    
    
    
    pub fn new(algorithm: &'static Algorithm) -> Context {
        init::init_once();
        Context {
            algorithm,
            state: algorithm.initial_state,
            completed_data_blocks: 0,
            pending: [0u8; MAX_BLOCK_LEN],
            num_pending: 0,
        }
    }
    
    
    
    
    
    pub fn update(&mut self, data: &[u8]) {
        if data.len() < self.algorithm.block_len - self.num_pending {
            self.pending[self.num_pending..(self.num_pending + data.len())].copy_from_slice(data);
            self.num_pending += data.len();
            return;
        }
        let mut remaining = data;
        if self.num_pending > 0 {
            let to_copy = self.algorithm.block_len - self.num_pending;
            self.pending[self.num_pending..self.algorithm.block_len]
                .copy_from_slice(&data[..to_copy]);
            unsafe {
                (self.algorithm.block_data_order)(&mut self.state, self.pending.as_ptr(), 1);
            }
            self.completed_data_blocks = self.completed_data_blocks.checked_add(1).unwrap();
            remaining = &remaining[to_copy..];
            self.num_pending = 0;
        }
        let num_blocks = remaining.len() / self.algorithm.block_len;
        let num_to_save_for_later = remaining.len() % self.algorithm.block_len;
        if num_blocks > 0 {
            unsafe {
                (self.algorithm.block_data_order)(&mut self.state, remaining.as_ptr(), num_blocks);
            }
            self.completed_data_blocks = self
                .completed_data_blocks
                .checked_add(polyfill::u64_from_usize(num_blocks))
                .unwrap();
        }
        if num_to_save_for_later > 0 {
            self.pending[..num_to_save_for_later]
                .copy_from_slice(&remaining[(remaining.len() - num_to_save_for_later)..]);
            self.num_pending = num_to_save_for_later;
        }
    }
    
    
    
    
    
    pub fn finish(mut self) -> Digest {
        
        
        let mut padding_pos = self.num_pending;
        self.pending[padding_pos] = 0x80;
        padding_pos += 1;
        if padding_pos > self.algorithm.block_len - self.algorithm.len_len {
            polyfill::slice::fill(&mut self.pending[padding_pos..self.algorithm.block_len], 0);
            unsafe {
                (self.algorithm.block_data_order)(&mut self.state, self.pending.as_ptr(), 1);
            }
            
            
            padding_pos = 0;
        }
        polyfill::slice::fill(
            &mut self.pending[padding_pos..(self.algorithm.block_len - 8)],
            0,
        );
        
        let mut completed_data_bits: u64 = self
            .completed_data_blocks
            .checked_mul(polyfill::u64_from_usize(self.algorithm.block_len))
            .unwrap()
            .checked_add(polyfill::u64_from_usize(self.num_pending))
            .unwrap()
            .checked_mul(8)
            .unwrap();
        for b in (&mut self.pending[(self.algorithm.block_len - 8)..self.algorithm.block_len])
            .into_iter()
            .rev()
        {
            *b = completed_data_bits as u8;
            completed_data_bits /= 0x100;
        }
        unsafe {
            (self.algorithm.block_data_order)(&mut self.state, self.pending.as_ptr(), 1);
        }
        Digest {
            algorithm: self.algorithm,
            value: (self.algorithm.format_output)(&self.state),
        }
    }
    
    #[inline(always)]
    pub fn algorithm(&self) -> &'static Algorithm { self.algorithm }
}
pub fn digest(algorithm: &'static Algorithm, data: &[u8]) -> Digest {
    let mut ctx = Context::new(algorithm);
    ctx.update(data);
    ctx.finish()
}
#[derive(Clone, Copy)]
pub struct Digest {
    value: Output,
    algorithm: &'static Algorithm,
}
impl Digest {
    
    #[inline(always)]
    pub fn algorithm(&self) -> &'static Algorithm { self.algorithm }
}
impl AsRef<[u8]> for Digest {
    #[inline(always)]
    fn as_ref(&self) -> &[u8] {
        &(polyfill::slice::u64_as_u8(&self.value))[..self.algorithm.output_len]
    }
}
impl core::fmt::Debug for Digest {
    fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(fmt, "{:?}:", self.algorithm)?;
        for byte in self.as_ref() {
            write!(fmt, "{:02x}", byte)?;
        }
        Ok(())
    }
}
pub struct Algorithm {
    
    pub output_len: usize,
    
    
    
    
    
    
    pub chaining_len: usize,
    
    pub block_len: usize,
    
    len_len: usize,
    block_data_order: unsafe extern "C" fn(state: &mut State, data: *const u8, num: c::size_t),
    format_output: fn(input: &State) -> Output,
    initial_state: State,
    id: AlgorithmID,
}
#[derive(Debug, Eq, PartialEq)]
enum AlgorithmID {
    SHA1,
    SHA256,
    SHA384,
    SHA512,
    SHA512_256,
}
impl PartialEq for Algorithm {
    fn eq(&self, other: &Self) -> bool { self.id == other.id }
}
impl Eq for Algorithm {}
derive_debug_via_self!(Algorithm, self.id);
pub static SHA1: Algorithm = Algorithm {
    output_len: sha1::OUTPUT_LEN,
    chaining_len: sha1::CHAINING_LEN,
    block_len: sha1::BLOCK_LEN,
    len_len: 64 / 8,
    block_data_order: sha1::block_data_order,
    format_output: sha256_format_output,
    initial_state: [
        u32x2!(0x67452301u32, 0xefcdab89u32),
        u32x2!(0x98badcfeu32, 0x10325476u32),
        u32x2!(0xc3d2e1f0u32, 0u32),
        0,
        0,
        0,
        0,
        0,
    ],
    id: AlgorithmID::SHA1,
};
pub static SHA256: Algorithm = Algorithm {
    output_len: SHA256_OUTPUT_LEN,
    chaining_len: SHA256_OUTPUT_LEN,
    block_len: 512 / 8,
    len_len: 64 / 8,
    block_data_order: GFp_sha256_block_data_order,
    format_output: sha256_format_output,
    initial_state: [
        u32x2!(0x6a09e667u32, 0xbb67ae85u32),
        u32x2!(0x3c6ef372u32, 0xa54ff53au32),
        u32x2!(0x510e527fu32, 0x9b05688cu32),
        u32x2!(0x1f83d9abu32, 0x5be0cd19u32),
        0,
        0,
        0,
        0,
    ],
    id: AlgorithmID::SHA256,
};
pub static SHA384: Algorithm = Algorithm {
    output_len: SHA384_OUTPUT_LEN,
    chaining_len: SHA512_OUTPUT_LEN,
    block_len: SHA512_BLOCK_LEN,
    len_len: SHA512_LEN_LEN,
    block_data_order: GFp_sha512_block_data_order,
    format_output: sha512_format_output,
    initial_state: [
        0xcbbb9d5dc1059ed8,
        0x629a292a367cd507,
        0x9159015a3070dd17,
        0x152fecd8f70e5939,
        0x67332667ffc00b31,
        0x8eb44a8768581511,
        0xdb0c2e0d64f98fa7,
        0x47b5481dbefa4fa4,
    ],
    id: AlgorithmID::SHA384,
};
pub static SHA512: Algorithm = Algorithm {
    output_len: SHA512_OUTPUT_LEN,
    chaining_len: SHA512_OUTPUT_LEN,
    block_len: SHA512_BLOCK_LEN,
    len_len: SHA512_LEN_LEN,
    block_data_order: GFp_sha512_block_data_order,
    format_output: sha512_format_output,
    initial_state: [
        0x6a09e667f3bcc908,
        0xbb67ae8584caa73b,
        0x3c6ef372fe94f82b,
        0xa54ff53a5f1d36f1,
        0x510e527fade682d1,
        0x9b05688c2b3e6c1f,
        0x1f83d9abfb41bd6b,
        0x5be0cd19137e2179,
    ],
    id: AlgorithmID::SHA512,
};
pub static SHA512_256: Algorithm = Algorithm {
    output_len: SHA512_256_OUTPUT_LEN,
    chaining_len: SHA512_OUTPUT_LEN,
    block_len: SHA512_BLOCK_LEN,
    len_len: SHA512_LEN_LEN,
    block_data_order: GFp_sha512_block_data_order,
    format_output: sha512_format_output,
    initial_state: [
        0x22312194fc2bf72c,
        0x9f555fa3c84c64c2,
        0x2393b86b6f53b151,
        0x963877195940eabd,
        0x96283ee2a88effe3,
        0xbe5e1e2553863992,
        0x2b0199fc2c85b8aa,
        0x0eb72ddc81c52ca2,
    ],
    id: AlgorithmID::SHA512_256,
};
type State = [u64; MAX_CHAINING_LEN / 8];
type Output = [u64; MAX_OUTPUT_LEN / 8];
pub const MAX_BLOCK_LEN: usize = 1024 / 8;
pub const MAX_OUTPUT_LEN: usize = 512 / 8;
pub const MAX_CHAINING_LEN: usize = MAX_OUTPUT_LEN;
fn sha256_format_output(input: &State) -> Output {
    let input = &polyfill::slice::u64_as_u32(input)[..8];
    [
        u32x2!(input[0].to_be(), input[1].to_be()),
        u32x2!(input[2].to_be(), input[3].to_be()),
        u32x2!(input[4].to_be(), input[5].to_be()),
        u32x2!(input[6].to_be(), input[7].to_be()),
        0,
        0,
        0,
        0,
    ]
}
fn sha512_format_output(input: &State) -> Output {
    [
        input[0].to_be(),
        input[1].to_be(),
        input[2].to_be(),
        input[3].to_be(),
        input[4].to_be(),
        input[5].to_be(),
        input[6].to_be(),
        input[7].to_be(),
    ]
}
pub const SHA1_OUTPUT_LEN: usize = sha1::OUTPUT_LEN;
pub const SHA256_OUTPUT_LEN: usize = 256 / 8;
pub const SHA384_OUTPUT_LEN: usize = 384 / 8;
pub const SHA512_OUTPUT_LEN: usize = 512 / 8;
pub const SHA512_256_OUTPUT_LEN: usize = 256 / 8;
const SHA512_BLOCK_LEN: usize = 1024 / 8;
const SHA512_LEN_LEN: usize = 128 / 8;
extern "C" {
    fn GFp_sha256_block_data_order(state: &mut State, data: *const u8, num: c::size_t);
    fn GFp_sha512_block_data_order(state: &mut State, data: *const u8, num: c::size_t);
}
#[cfg(test)]
pub mod test_util {
    use super::super::digest;
    pub static ALL_ALGORITHMS: [&digest::Algorithm; 5] = [
        &digest::SHA1,
        &digest::SHA256,
        &digest::SHA384,
        &digest::SHA512,
        &digest::SHA512_256,
    ];
}
#[cfg(test)]
mod tests {
    mod max_input {
        use super::super::super::digest;
        macro_rules! max_input_tests {
            ( $algorithm_name:ident ) => {
                mod $algorithm_name {
                    use super::super::super::super::digest;
                    #[test]
                    fn max_input_test() { super::max_input_test(&digest::$algorithm_name); }
                    #[test]
                    #[should_panic]
                    fn too_long_input_test_block() {
                        super::too_long_input_test_block(&digest::$algorithm_name);
                    }
                    #[test]
                    #[should_panic]
                    fn too_long_input_test_byte() {
                        super::too_long_input_test_byte(&digest::$algorithm_name);
                    }
                }
            };
        }
        fn max_input_test(alg: &'static digest::Algorithm) {
            let mut context = nearly_full_context(alg);
            let next_input = vec![0u8; alg.block_len - 1];
            context.update(&next_input);
            let _ = context.finish(); 
        }
        fn too_long_input_test_block(alg: &'static digest::Algorithm) {
            let mut context = nearly_full_context(alg);
            let next_input = vec![0u8; alg.block_len];
            context.update(&next_input);
            let _ = context.finish(); 
        }
        fn too_long_input_test_byte(alg: &'static digest::Algorithm) {
            let mut context = nearly_full_context(alg);
            let next_input = vec![0u8; alg.block_len - 1];
            context.update(&next_input); 
            context.update(&[0]);
            let _ = context.finish(); 
        }
        fn nearly_full_context(alg: &'static digest::Algorithm) -> digest::Context {
            
            
            
            let max_bytes = 1u64 << (64 - 3);
            let max_blocks = max_bytes / (alg.block_len as u64);
            digest::Context {
                algorithm: alg,
                state: alg.initial_state,
                completed_data_blocks: max_blocks - 1,
                pending: [0u8; digest::MAX_BLOCK_LEN],
                num_pending: 0,
            }
        }
        max_input_tests!(SHA1);
        max_input_tests!(SHA256);
        max_input_tests!(SHA384);
        max_input_tests!(SHA512);
    }
}