use super::digest_scalar::digest_scalar;
use arithmetic::montgomery::*;
use core;
use crate::{der, digest, ec, error, pkcs8, private, rand, signature, signature_impl};
use ec::suite_b::{ops::*, private_key};
use untrusted;
pub struct Algorithm {
curve: &'static ec::Curve,
private_scalar_ops: &'static PrivateScalarOps,
private_key_ops: &'static PrivateKeyOps,
digest_alg: &'static digest::Algorithm,
pkcs8_template: &'static pkcs8::Template,
format_rs:
for<'a> fn(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &'a mut [u8]) -> &'a [u8],
id: AlgorithmID,
}
#[derive(Debug, Eq, PartialEq)]
enum AlgorithmID {
ECDSA_P256_SHA256_FIXED_SIGNING,
ECDSA_P384_SHA384_FIXED_SIGNING,
ECDSA_P256_SHA256_ASN1_SIGNING,
ECDSA_P384_SHA384_ASN1_SIGNING,
}
derive_debug_via_self!(Algorithm, self.id);
impl PartialEq for Algorithm {
fn eq(&self, other: &Self) -> bool { self.id == other.id }
}
impl Eq for Algorithm {}
impl private::Sealed for Algorithm {}
#[cfg(feature = "use_heap")]
impl signature::SigningAlgorithm for Algorithm {
fn from_pkcs8(
&'static self, input: untrusted::Input,
) -> Result<signature::KeyPair, error::Unspecified> {
Key::from_pkcs8(self, input).map(signature::KeyPair::new)
}
}
pub struct Key {
d: Scalar<R>,
alg: &'static Algorithm,
}
derive_debug_via_self!(Key, self.alg);
impl Key {
pub fn generate_pkcs8(
alg: &'static Algorithm, rng: &rand::SecureRandom,
) -> Result<pkcs8::Document, error::Unspecified> {
let private_key = ec::PrivateKey::generate(alg.curve, rng)?;
let mut public_key_bytes = [0; ec::PUBLIC_KEY_MAX_LEN];
let public_key_bytes = &mut public_key_bytes[..alg.curve.public_key_len];
(alg.curve.public_from_private)(public_key_bytes, &private_key)?;
Ok(pkcs8::wrap_key(
&alg.pkcs8_template,
private_key.bytes(alg.curve),
public_key_bytes,
))
}
pub fn from_pkcs8(
alg: &'static Algorithm, input: untrusted::Input,
) -> Result<Self, error::Unspecified> {
let key_pair = ec::suite_b::key_pair_from_pkcs8(alg.curve, alg.pkcs8_template, input)?;
Ok(Self::new(alg, key_pair))
}
pub fn from_private_key_and_public_key(
alg: &'static Algorithm, private_key: untrusted::Input, public_key: untrusted::Input,
) -> Result<Self, error::Unspecified> {
let key_pair = ec::suite_b::key_pair_from_bytes(alg.curve, private_key, public_key)?;
Ok(Self::new(alg, key_pair))
}
fn new(alg: &'static Algorithm, key_pair: ec::KeyPair) -> Self {
let d = private_key::private_key_as_scalar(alg.private_key_ops, &key_pair.private_key);
let d = alg
.private_scalar_ops
.scalar_ops
.scalar_product(&d, &alg.private_scalar_ops.oneRR_mod_n);
Self { d, alg }
}
pub fn sign(
&self, msg: untrusted::Input, rng: &rand::SecureRandom,
) -> Result<signature::Signature, error::Unspecified> {
let h = digest::digest(self.alg.digest_alg, msg.as_slice_less_safe());
self.sign_(&h, rng)
}
fn sign_(
&self, h: &digest::Digest, rng: &rand::SecureRandom,
) -> Result<signature::Signature, error::Unspecified> {
let ops = self.alg.private_scalar_ops;
let scalar_ops = ops.scalar_ops;
let cops = scalar_ops.common;
let private_key_ops = self.alg.private_key_ops;
for _ in 0..100 {
let k = private_key::random_scalar(self.alg.private_key_ops, rng)?;
let k_inv = scalar_ops.scalar_inv_to_mont(&k);
let r = private_key_ops.point_mul_base(&k);
let r = {
let (x, _) = private_key::affine_from_jacobian(private_key_ops, &r)?;
let x = cops.elem_unencoded(&x);
elem_reduced_to_scalar(cops, &x)
};
if cops.is_zero(&r) {
continue;
}
let e = digest_scalar(scalar_ops, h);
let s = {
let dr = scalar_ops.scalar_product(&self.d, &r);
let e_plus_dr = scalar_sum(cops, &e, &dr);
scalar_ops.scalar_product(&k_inv, &e_plus_dr)
};
if cops.is_zero(&s) {
continue;
}
let mut sig_bytes = [0; signature_impl::MAX_LEN];
let sig = (self.alg.format_rs)(scalar_ops, &r, &s, &mut sig_bytes[..]);
return Ok(signature_impl::signature_from_bytes(sig));
}
Err(error::Unspecified)
}
}
#[cfg(feature = "use_heap")]
impl signature::KeyPairImpl for Key {
fn sign(
&self, rng: &rand::SecureRandom, msg: untrusted::Input,
) -> Result<signature::Signature, error::Unspecified> {
Key::sign(self, msg, rng)
}
}
fn format_rs_fixed<'a>(
ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &'a mut [u8],
) -> &'a [u8] {
let scalar_len = ops.scalar_bytes_len();
{
let (r_out, rest) = out.split_at_mut(scalar_len);
big_endian_from_limbs(&r.limbs[..ops.common.num_limbs], r_out);
let (s_out, _) = rest.split_at_mut(scalar_len);
big_endian_from_limbs(&s.limbs[..ops.common.num_limbs], s_out);
}
&out[..(2 * scalar_len)]
}
fn format_rs_asn1<'a>(
ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &'a mut [u8],
) -> &'a [u8] {
fn format_integer_tlv(ops: &ScalarOps, a: &Scalar, out: &mut [u8]) -> usize {
let mut fixed = [0u8; ec::SCALAR_MAX_BYTES + 1];
let fixed = &mut fixed[..(ops.scalar_bytes_len() + 1)];
big_endian_from_limbs(&a.limbs[..ops.common.num_limbs], &mut fixed[1..]);
debug_assert_eq!(fixed[0], 0);
let first_index = fixed.iter().position(|b| *b != 0).unwrap();
let first_index = if fixed[first_index] & 0x80 != 0 {
first_index - 1
} else {
first_index
};
let value = &fixed[first_index..];
out[0] = der::Tag::Integer as u8;
assert!(value.len() < 128);
out[1] = value.len() as u8;
out[2..][..value.len()].copy_from_slice(&value);
2 + value.len()
}
out[0] = der::Tag::Sequence as u8;
let r_tlv_len = format_integer_tlv(ops, r, &mut out[2..]);
let s_tlv_len = format_integer_tlv(ops, s, &mut out[2..][r_tlv_len..]);
let value_len = r_tlv_len + s_tlv_len;
assert!(value_len < 128);
out[1] = value_len as u8;
&out[..(2 + value_len)]
}
pub static ECDSA_P256_SHA256_FIXED_SIGNING: Algorithm = Algorithm {
curve: &ec::suite_b::curve::P256,
private_scalar_ops: &p256::PRIVATE_SCALAR_OPS,
private_key_ops: &p256::PRIVATE_KEY_OPS,
digest_alg: &digest::SHA256,
pkcs8_template: &EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE,
format_rs: format_rs_fixed,
id: AlgorithmID::ECDSA_P256_SHA256_FIXED_SIGNING,
};
pub static ECDSA_P384_SHA384_FIXED_SIGNING: Algorithm = Algorithm {
curve: &ec::suite_b::curve::P384,
private_scalar_ops: &p384::PRIVATE_SCALAR_OPS,
private_key_ops: &p384::PRIVATE_KEY_OPS,
digest_alg: &digest::SHA384,
pkcs8_template: &EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE,
format_rs: format_rs_fixed,
id: AlgorithmID::ECDSA_P384_SHA384_FIXED_SIGNING,
};
pub static ECDSA_P256_SHA256_ASN1_SIGNING: Algorithm = Algorithm {
curve: &ec::suite_b::curve::P256,
private_scalar_ops: &p256::PRIVATE_SCALAR_OPS,
private_key_ops: &p256::PRIVATE_KEY_OPS,
digest_alg: &digest::SHA256,
pkcs8_template: &EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE,
format_rs: format_rs_asn1,
id: AlgorithmID::ECDSA_P256_SHA256_ASN1_SIGNING,
};
pub static ECDSA_P384_SHA384_ASN1_SIGNING: Algorithm = Algorithm {
curve: &ec::suite_b::curve::P384,
private_scalar_ops: &p384::PRIVATE_SCALAR_OPS,
private_key_ops: &p384::PRIVATE_KEY_OPS,
digest_alg: &digest::SHA384,
pkcs8_template: &EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE,
format_rs: format_rs_asn1,
id: AlgorithmID::ECDSA_P384_SHA384_ASN1_SIGNING,
};
static EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE: pkcs8::Template = pkcs8::Template {
bytes: include_bytes!("ecPublicKey_p256_pkcs8_v1_template.der"),
alg_id_range: core::ops::Range { start: 8, end: 27 },
curve_id_index: 9,
private_key_index: 0x24,
};
static EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE: pkcs8::Template = pkcs8::Template {
bytes: include_bytes!("ecPublicKey_p384_pkcs8_v1_template.der"),
alg_id_range: core::ops::Range { start: 8, end: 24 },
curve_id_index: 9,
private_key_index: 0x23,
};
#[cfg(test)]
mod tests {
use crate::{signature, test};
use untrusted;
#[test]
fn signature_ecdsa_sign_fixed_test() {
test::from_file(
"src/ec/suite_b/ecdsa/ecdsa_sign_fixed_tests.txt",
|section, test_case| {
assert_eq!(section, "");
let curve_name = test_case.consume_string("Curve");
let digest_name = test_case.consume_string("Digest");
let msg = test_case.consume_bytes("Msg");
let msg = untrusted::Input::from(&msg);
let d = test_case.consume_bytes("d");
let d = untrusted::Input::from(&d);
let q = test_case.consume_bytes("Q");
let q = untrusted::Input::from(&q);
let k = test_case.consume_bytes("k");
let expected_result = test_case.consume_bytes("Sig");
let alg = match (curve_name.as_str(), digest_name.as_str()) {
("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_FIXED_SIGNING,
("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_FIXED_SIGNING,
_ => {
panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
},
};
let private_key =
signature::ECDSAKeyPair::from_private_key_and_public_key(alg, d, q).unwrap();
let rng = test::rand::FixedSliceRandom { bytes: &k };
let actual_result = private_key.sign(msg, &rng).unwrap();
assert_eq!(actual_result.as_ref(), &expected_result[..]);
Ok(())
},
);
}
#[test]
fn signature_ecdsa_sign_asn1_test() {
test::from_file(
"src/ec/suite_b/ecdsa/ecdsa_sign_asn1_tests.txt",
|section, test_case| {
assert_eq!(section, "");
let curve_name = test_case.consume_string("Curve");
let digest_name = test_case.consume_string("Digest");
let msg = test_case.consume_bytes("Msg");
let msg = untrusted::Input::from(&msg);
let d = test_case.consume_bytes("d");
let d = untrusted::Input::from(&d);
let q = test_case.consume_bytes("Q");
let q = untrusted::Input::from(&q);
let k = test_case.consume_bytes("k");
let expected_result = test_case.consume_bytes("Sig");
let alg = match (curve_name.as_str(), digest_name.as_str()) {
("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_ASN1_SIGNING,
("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_ASN1_SIGNING,
_ => {
panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
},
};
let private_key =
signature::ECDSAKeyPair::from_private_key_and_public_key(alg, d, q).unwrap();
let rng = test::rand::FixedSliceRandom { bytes: &k };
let actual_result = private_key.sign(msg, &rng).unwrap();
assert_eq!(actual_result.as_ref(), &expected_result[..]);
Ok(())
},
);
}
}