1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
// Copyright 2015 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! HMAC-based Extract-and-Expand Key Derivation Function. //! //! HKDF is specified in [RFC 5869]. //! //! In most situations, it is best to use `extract_and_expand` to do both the //! HKDF-Extract and HKDF-Expand as one atomic operation. It is only necessary //! to use the separate `expand` and `extract` functions if a single derived //! `PRK` (defined in RFC 5869) is used more than once. //! //! Salts have type `hmac::SigningKey` instead of `&[u8]` because they are //! frequently used for multiple HKDF operations, and it is more efficient to //! construct the `SigningKey` once and reuse it. Given a digest algorithm //! `digest_alg` and a salt `salt: &[u8]`, the `SigningKey` should be //! constructed as `hmac::SigningKey::new(digest_alg, salt)`. //! //! [RFC 5869]: https://tools.ietf.org/html/rfc5869 use hmac; /// Fills `out` with the output of the HKDF Extract-and-Expand operation for /// the given inputs. /// /// `extract_and_expand` is exactly equivalent to: /// /// ``` /// # use ring::{hkdf, hmac}; /// # fn foo(salt: &hmac::SigningKey, secret: &[u8], info: &[u8], /// # out: &mut [u8]) { /// let prk = hkdf::extract(salt, secret); /// hkdf::expand(&prk, info, out) /// # } /// ``` /// /// See the documentation for `extract` and `expand` for details. /// /// # Panics /// /// `extract_and_expand` panics if `expand` panics. pub fn extract_and_expand(salt: &hmac::SigningKey, secret: &[u8], info: &[u8], out: &mut [u8]) { let prk = extract(salt, secret); expand(&prk, info, out) } /// The HKDF-Extract operation. /// /// | Parameter | RFC 5869 Term /// |---------------------------|-------------- /// | `salt.digest_algorithm()` | Hash /// | `secret` | IKM (Input Keying Material) /// | [return value] | PRK pub fn extract(salt: &hmac::SigningKey, secret: &[u8]) -> hmac::SigningKey { // The spec says that if no salt is provided then a key of // `digest_alg.output_len` bytes of zeros is used. But, HMAC keys are // already zero-padded to the block length, which is larger than the output // length of the extract step (the length of the digest). Consequently, the // `SigningKey` constructor will automatically do the right thing for a // zero-length string. let prk = hmac::sign(salt, secret); hmac::SigningKey::new(salt.digest_algorithm(), prk.as_ref()) } /// Fills `out` with the output of the HKDF-Expand operation for the given /// inputs. /// /// `prk` should be the return value of an earlier call to `extract`. /// /// | Parameter | RFC 5869 Term /// |------------|-------------- /// | prk | PRK /// | info | info /// | out | OKM (Output Keying Material) /// | out.len() | L (Length of output keying material in bytes) /// /// # Panics /// /// `expand` panics if the requested output length is larger than 255 times the /// size of the digest algorithm, i.e. if /// `out.len() > 255 * salt.digest_algorithm().output_len`. This is the limit /// imposed by the HKDF specification, and is necessary to prevent overflow of /// the 8-bit iteration counter in the expansion step. pub fn expand(prk: &hmac::SigningKey, info: &[u8], out: &mut [u8]) { let digest_alg = prk.digest_algorithm(); assert!(out.len() <= 255 * digest_alg.output_len); assert!(digest_alg.block_len >= digest_alg.output_len); let mut ctx = hmac::SigningContext::with_key(prk); let mut n = 1u8; let mut pos = 0; loop { ctx.update(info); ctx.update(&[n]); let t = ctx.sign(); // Append `t` to the output. let to_copy = if out.len() - pos < digest_alg.output_len { out.len() - pos } else { digest_alg.output_len }; let t_bytes = t.as_ref(); for i in 0..to_copy { out[pos + i] = t_bytes[i]; } if to_copy < digest_alg.output_len { break; } pos += digest_alg.output_len; ctx = hmac::SigningContext::with_key(prk); ctx.update(t_bytes); n += 1; } }