#![allow(box_pointers)]
use arithmetic::montgomery::*;
use core::{
self,
marker::PhantomData,
ops::{Deref, DerefMut},
};
use crate::{bits, bssl, c, error, limb, untrusted};
use std;
#[cfg(any(test, feature = "rsa_signing"))]
use constant_time;
pub unsafe trait Prime {}
struct Width<M> {
num_limbs: usize,
m: PhantomData<M>,
}
struct BoxedLimbs<M> {
limbs: std::boxed::Box<[limb::Limb]>,
m: PhantomData<M>,
}
impl<M> Deref for BoxedLimbs<M> {
type Target = [limb::Limb];
#[inline]
fn deref(&self) -> &Self::Target { &self.limbs }
}
impl<M> DerefMut for BoxedLimbs<M> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target { &mut self.limbs }
}
impl<M> Clone for BoxedLimbs<M> {
fn clone(&self) -> Self {
Self {
limbs: self.limbs.clone(),
m: self.m.clone(),
}
}
}
impl<M> BoxedLimbs<M> {
fn positive_minimal_width_from_be_bytes(
input: untrusted::Input,
) -> Result<Self, error::Unspecified> {
if untrusted::Reader::new(input).peek(0) {
return Err(error::Unspecified);
}
let num_limbs = (input.len() + limb::LIMB_BYTES - 1) / limb::LIMB_BYTES;
let mut r = Self::zero(Width {
num_limbs,
m: PhantomData,
});
limb::parse_big_endian_and_pad_consttime(input, &mut r)?;
Ok(r)
}
#[cfg(feature = "rsa_signing")]
fn minimal_width_from_unpadded(limbs: &[limb::Limb]) -> Self {
debug_assert_ne!(limbs.last(), Some(&0));
use std::borrow::ToOwned;
Self {
limbs: limbs.to_owned().into_boxed_slice(),
m: PhantomData,
}
}
fn from_be_bytes_padded_less_than(
input: untrusted::Input, m: &Modulus<M>,
) -> Result<Self, error::Unspecified> {
let mut r = Self::zero(m.width());
limb::parse_big_endian_and_pad_consttime(input, &mut r)?;
if limb::limbs_less_than_limbs_consttime(&r, &m.limbs) != limb::LimbMask::True {
return Err(error::Unspecified);
}
Ok(r)
}
#[inline]
fn is_zero(&self) -> bool {
limb::limbs_are_zero_constant_time(&self.limbs) == limb::LimbMask::True
}
fn zero(width: Width<M>) -> Self {
use std::borrow::ToOwned;
Self {
limbs: vec![0; width.num_limbs].to_owned().into_boxed_slice(),
m: PhantomData,
}
}
fn width(&self) -> Width<M> {
Width {
num_limbs: self.limbs.len(),
m: PhantomData,
}
}
}
pub unsafe trait SmallerModulus<L> {}
pub unsafe trait SlightlySmallerModulus<L>: SmallerModulus<L> {}
pub unsafe trait NotMuchSmallerModulus<L>: SmallerModulus<L> {}
pub const MODULUS_MAX_LIMBS: usize = 8192 / limb::LIMB_BITS;
pub struct Modulus<M> {
limbs: BoxedLimbs<M>,
n0: N0,
oneRR: One<M, RR>,
}
impl core::fmt::Debug for Modulus<super::N> {
fn fmt(&self, fmt: &mut ::core::fmt::Formatter) -> Result<(), ::core::fmt::Error> {
fmt.debug_struct("Modulus")
.finish()
}
}
impl<M> Modulus<M> {
pub fn from_be_bytes_with_bit_length(
input: untrusted::Input,
) -> Result<(Self, bits::BitLength), error::Unspecified> {
let limbs = BoxedLimbs::positive_minimal_width_from_be_bytes(input)?;
let bits = limb::limbs_minimal_bits(&limbs);
Ok((Self::from_boxed_limbs(limbs)?, bits))
}
#[cfg(feature = "rsa_signing")]
pub fn from(n: Nonnegative) -> Result<Self, error::Unspecified> {
let limbs = BoxedLimbs {
limbs: n.limbs.into_boxed_slice(),
m: PhantomData,
};
Self::from_boxed_limbs(limbs)
}
fn from_boxed_limbs(n: BoxedLimbs<M>) -> Result<Self, error::Unspecified> {
if n.len() > MODULUS_MAX_LIMBS {
return Err(error::Unspecified);
}
Result::from(unsafe { GFp_bn_mul_mont_check_num_limbs(n.len()) })?;
if limb::limbs_are_even_constant_time(&n) != limb::LimbMask::False {
return Err(error::Unspecified);
}
if limb::limbs_less_than_limb_constant_time(&n, 3) != limb::LimbMask::False {
return Err(error::Unspecified);
}
let n0 = {
let mut n_mod_r: u64 = u64::from(n[0]);
if N0_LIMBS_USED == 2 {
debug_assert_eq!(limb::LIMB_BITS, 32);
n_mod_r |= u64::from(n[1]) << 32;
}
N0::from(unsafe { GFp_bn_neg_inv_mod_r_u64(n_mod_r) })
};
let oneRR = {
let partial = PartialModulus {
limbs: &n.limbs,
n0: n0.clone(),
m: PhantomData,
};
One::newRR(&partial)
};
Ok(Modulus {
limbs: n,
n0,
oneRR,
})
}
#[inline]
fn width(&self) -> Width<M> { self.limbs.width() }
#[cfg(feature = "rsa_signing")]
fn zero<E>(&self) -> Elem<M, E> {
Elem {
limbs: BoxedLimbs::zero(self.width()),
encoding: PhantomData,
}
}
#[cfg(feature = "rsa_signing")]
fn one(&self) -> Elem<M, Unencoded> {
let mut r = self.zero();
r.limbs[0] = 1;
r
}
pub fn oneRR(&self) -> &One<M, RR> { &self.oneRR }
#[cfg(feature = "rsa_signing")]
pub fn to_elem<L>(&self, l: &Modulus<L>) -> Elem<L, Unencoded>
where
M: SmallerModulus<L>,
{
assert_eq!(self.width().num_limbs, l.width().num_limbs);
let limbs = self.limbs.clone();
Elem {
limbs: BoxedLimbs {
limbs: limbs.limbs,
m: PhantomData,
},
encoding: PhantomData,
}
}
fn as_partial(&self) -> PartialModulus<M> {
PartialModulus {
limbs: &self.limbs,
n0: self.n0.clone(),
m: PhantomData,
}
}
}
struct PartialModulus<'a, M> {
limbs: &'a [limb::Limb],
n0: N0,
m: PhantomData<M>,
}
impl<'a, M> PartialModulus<'a, M> {
fn zero(&self) -> Elem<M, R> {
let width = Width {
num_limbs: self.limbs.len(),
m: PhantomData,
};
Elem {
limbs: BoxedLimbs::zero(width),
encoding: PhantomData,
}
}
}
pub struct Elem<M, E = Unencoded> {
limbs: BoxedLimbs<M>,
encoding: PhantomData<E>,
}
impl<M, E> Clone for Elem<M, E> {
fn clone(&self) -> Self {
Elem {
limbs: self.limbs.clone(),
encoding: self.encoding.clone(),
}
}
}
impl<M, E> Elem<M, E> {
#[inline]
pub fn is_zero(&self) -> bool { self.limbs.is_zero() }
}
impl<M, E: ReductionEncoding> Elem<M, E> {
fn decode_once(self, m: &Modulus<M>) -> Elem<M, <E as ReductionEncoding>::Output> {
let mut limbs = self.limbs;
let num_limbs = m.width().num_limbs;
let mut one = [0; MODULUS_MAX_LIMBS];
one[0] = 1;
let one = &one[..num_limbs];
unsafe {
GFp_bn_mul_mont(
limbs.as_mut_ptr(),
limbs.as_ptr(),
one.as_ptr(),
m.limbs.as_ptr(),
&m.n0,
num_limbs,
)
}
Elem {
limbs,
encoding: PhantomData,
}
}
}
impl<M> Elem<M, R> {
#[inline]
pub fn into_unencoded(self, m: &Modulus<M>) -> Elem<M, Unencoded> { self.decode_once(m) }
}
impl<M> Elem<M, Unencoded> {
pub fn from_be_bytes_padded(
input: untrusted::Input, m: &Modulus<M>,
) -> Result<Self, error::Unspecified> {
Ok(Elem {
limbs: BoxedLimbs::from_be_bytes_padded_less_than(input, m)?,
encoding: PhantomData,
})
}
#[inline]
pub fn fill_be_bytes(&self, out: &mut [u8]) {
limb::big_endian_from_limbs(&self.limbs, out)
}
#[cfg(feature = "rsa_signing")]
pub fn into_modulus<MM>(self) -> Result<Modulus<MM>, error::Unspecified> {
Modulus::from_boxed_limbs(BoxedLimbs::minimal_width_from_unpadded(&self.limbs))
}
#[cfg(feature = "rsa_signing")]
fn is_one(&self) -> bool {
limb::limbs_equal_limb_constant_time(&self.limbs, 1) == limb::LimbMask::True
}
}
pub fn elem_mul<M, AF, BF>(
a: &Elem<M, AF>, b: Elem<M, BF>, m: &Modulus<M>,
) -> Elem<M, <(AF, BF) as ProductEncoding>::Output>
where
(AF, BF): ProductEncoding,
{
elem_mul_(a, b, &m.as_partial())
}
fn elem_mul_<M, AF, BF>(
a: &Elem<M, AF>, mut b: Elem<M, BF>, m: &PartialModulus<M>,
) -> Elem<M, <(AF, BF) as ProductEncoding>::Output>
where
(AF, BF): ProductEncoding,
{
unsafe {
GFp_bn_mul_mont(
b.limbs.as_mut_ptr(),
a.limbs.as_ptr(),
b.limbs.as_ptr(),
m.limbs.as_ptr(),
&m.n0,
m.limbs.len(),
);
}
Elem {
limbs: b.limbs,
encoding: PhantomData,
}
}
fn elem_mul_by_2<M, AF>(a: &mut Elem<M, AF>, m: &PartialModulus<M>) {
unsafe {
LIMBS_shl_mod(
a.limbs.as_mut_ptr(),
a.limbs.as_ptr(),
m.limbs.as_ptr(),
m.limbs.len(),
);
}
}
#[cfg(feature = "rsa_signing")]
pub fn elem_reduced_once<Larger, Smaller: SlightlySmallerModulus<Larger>>(
a: &Elem<Larger, Unencoded>, m: &Modulus<Smaller>,
) -> Elem<Smaller, Unencoded> {
let mut r = a.limbs.clone();
assert!(r.len() <= m.limbs.len());
limb::limbs_reduce_once_constant_time(&mut r, &m.limbs);
Elem {
limbs: BoxedLimbs {
limbs: r.limbs,
m: PhantomData,
},
encoding: PhantomData,
}
}
#[cfg(feature = "rsa_signing")]
#[inline]
pub fn elem_reduced<Larger, Smaller: NotMuchSmallerModulus<Larger>>(
a: &Elem<Larger, Unencoded>, m: &Modulus<Smaller>,
) -> Result<Elem<Smaller, RInverse>, error::Unspecified> {
let mut tmp = [0; MODULUS_MAX_LIMBS];
let tmp = &mut tmp[..a.limbs.len()];
tmp.copy_from_slice(&a.limbs);
let mut r = m.zero();
Result::from(unsafe {
GFp_bn_from_montgomery_in_place(
r.limbs.as_mut_ptr(),
r.limbs.len(),
tmp.as_mut_ptr(),
tmp.len(),
m.limbs.as_ptr(),
m.limbs.len(),
&m.n0,
)
})?;
Ok(r)
}
fn elem_squared<M, E>(
mut a: Elem<M, E>, m: &PartialModulus<M>,
) -> Elem<M, <(E, E) as ProductEncoding>::Output>
where
(E, E): ProductEncoding,
{
unsafe {
GFp_bn_mul_mont(
a.limbs.as_mut_ptr(),
a.limbs.as_ptr(),
a.limbs.as_ptr(),
m.limbs.as_ptr(),
&m.n0,
m.limbs.len(),
);
};
Elem {
limbs: a.limbs,
encoding: PhantomData,
}
}
#[cfg(feature = "rsa_signing")]
pub fn elem_widen<Larger, Smaller: SmallerModulus<Larger>>(
a: Elem<Smaller, Unencoded>, m: &Modulus<Larger>,
) -> Elem<Larger, Unencoded> {
let mut r = m.zero();
r.limbs[..a.limbs.len()].copy_from_slice(&a.limbs);
r
}
#[cfg(feature = "rsa_signing")]
pub fn elem_add<M, E>(mut a: Elem<M, E>, b: Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> {
unsafe {
LIMBS_add_mod(
a.limbs.as_mut_ptr(),
a.limbs.as_ptr(),
b.limbs.as_ptr(),
m.limbs.as_ptr(),
m.limbs.len(),
)
}
a
}
#[cfg(feature = "rsa_signing")]
pub fn elem_sub<M, E>(mut a: Elem<M, E>, b: &Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> {
unsafe {
LIMBS_sub_mod(
a.limbs.as_mut_ptr(),
a.limbs.as_ptr(),
b.limbs.as_ptr(),
m.limbs.as_ptr(),
m.limbs.len(),
);
}
a
}
pub struct One<M, E>(Elem<M, E>);
impl<M> One<M, RR> {
fn newRR(m: &PartialModulus<M>) -> One<M, RR> {
use limb::LIMB_BITS;
let m_bits = limb::limbs_minimal_bits(&m.limbs).as_usize_bits();
let r = (m_bits + (LIMB_BITS - 1)) / LIMB_BITS * LIMB_BITS;
let bit = m_bits - 1;
let mut base = m.zero();
base.limbs[bit / LIMB_BITS] = 1 << (bit % LIMB_BITS);
let lg_base = 2usize;
debug_assert_eq!(lg_base.count_ones(), 1);
let shifts = r - bit + lg_base;
let exponent = (r / lg_base) as u64;
for _ in 0..shifts {
elem_mul_by_2(&mut base, m)
}
let RR = elem_exp_vartime_(base, exponent, m);
One(Elem {
limbs: RR.limbs,
encoding: PhantomData,
})
}
}
impl<M, E> AsRef<Elem<M, E>> for One<M, E> {
fn as_ref(&self) -> &Elem<M, E> { &self.0 }
}
#[derive(Clone, Copy, Debug)]
pub struct PublicExponent(u64);
impl PublicExponent {
pub fn from_be_bytes(
input: untrusted::Input, min_value: u64,
) -> Result<Self, error::Unspecified> {
if input.len() > 5 {
return Err(error::Unspecified);
}
let value = input.read_all_mut(error::Unspecified, |input| {
if input.peek(0) {
return Err(error::Unspecified);
}
let mut value = 0u64;
loop {
let byte = input.read_byte()?;
value = (value << 8) | u64::from(byte);
if input.at_end() {
return Ok(value);
}
}
})?;
if value & 1 != 1 {
return Err(error::Unspecified);
}
debug_assert!(min_value & 1 == 1);
debug_assert!(min_value <= PUBLIC_EXPONENT_MAX_VALUE);
if min_value < 3 {
return Err(error::Unspecified);
}
if value < min_value {
return Err(error::Unspecified);
}
if value > PUBLIC_EXPONENT_MAX_VALUE {
return Err(error::Unspecified);
}
Ok(PublicExponent(value))
}
}
const PUBLIC_EXPONENT_MAX_VALUE: u64 = (1u64 << 33) - 1;
pub fn elem_exp_vartime<M>(
base: Elem<M, Unencoded>, PublicExponent(exponent): PublicExponent, m: &Modulus<M>,
) -> Elem<M, R> {
let base = elem_mul(m.oneRR().as_ref(), base, &m);
elem_exp_vartime_(base, exponent, &m.as_partial())
}
fn elem_exp_vartime_<M>(base: Elem<M, R>, exponent: u64, m: &PartialModulus<M>) -> Elem<M, R> {
assert!(exponent >= 1);
assert!(exponent <= PUBLIC_EXPONENT_MAX_VALUE);
let mut acc = base.clone();
let mut bit = 1 << (64 - 1 - exponent.leading_zeros());
debug_assert!((exponent & bit) != 0);
while bit > 1 {
bit >>= 1;
acc = elem_squared(acc, m);
if (exponent & bit) != 0 {
acc = elem_mul_(&base, acc, m);
}
}
acc
}
#[cfg(feature = "rsa_signing")]
pub struct PrivateExponent<M> {
limbs: BoxedLimbs<M>,
}
#[cfg(feature = "rsa_signing")]
impl<M> PrivateExponent<M> {
pub fn from_be_bytes_padded(
input: untrusted::Input, p: &Modulus<M>,
) -> Result<Self, error::Unspecified> {
let dP = BoxedLimbs::from_be_bytes_padded_less_than(input, p)?;
if limb::limbs_are_even_constant_time(&dP) != limb::LimbMask::False {
return Err(error::Unspecified);
}
Ok(PrivateExponent { limbs: dP })
}
}
#[cfg(feature = "rsa_signing")]
impl<M: Prime> PrivateExponent<M> {
fn for_flt(p: &Modulus<M>) -> Self {
let two = elem_add(p.one(), p.one(), p);
let p_minus_2 = elem_sub(p.zero(), &two, p);
PrivateExponent {
limbs: p_minus_2.limbs,
}
}
}
#[cfg(feature = "rsa_signing")]
pub fn elem_exp_consttime<M>(
base: Elem<M, R>, exponent: &PrivateExponent<M>, m: &Modulus<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
let mut r = Elem {
limbs: base.limbs,
encoding: PhantomData,
};
let oneR = {
let one = m.one();
elem_mul(m.oneRR().as_ref(), one, m)
};
Result::from(unsafe {
GFp_BN_mod_exp_mont_consttime(
r.limbs.as_mut_ptr(),
r.limbs.as_ptr(),
exponent.limbs.as_ptr(),
oneR.limbs.as_ptr(),
m.limbs.as_ptr(),
m.limbs.len(),
&m.n0,
)
})?;
#[cfg(not(target_arch = "x86_64"))]
let r = r.into_unencoded(m);
Ok(r)
}
#[cfg(feature = "rsa_signing")]
pub fn elem_inverse_consttime<M: Prime>(
a: Elem<M, R>, m: &Modulus<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
elem_exp_consttime(a, &PrivateExponent::for_flt(&m), m)
}
#[cfg(feature = "rsa_signing")]
pub fn verify_inverses_consttime<M>(
a: &Elem<M, R>, b: Elem<M, Unencoded>, m: &Modulus<M>,
) -> Result<(), error::Unspecified> {
if elem_mul(a, b, m).is_one() {
Ok(())
} else {
Err(error::Unspecified)
}
}
#[cfg(any(test, feature = "rsa_signing"))]
pub fn elem_verify_equal_consttime<M, E>(
a: &Elem<M, E>, b: &Elem<M, E>,
) -> Result<(), error::Unspecified> {
constant_time::verify_slices_are_equal(
limb::limbs_as_bytes(&a.limbs),
limb::limbs_as_bytes(&b.limbs),
)
}
#[cfg(feature = "rsa_signing")]
pub struct Nonnegative {
limbs: std::vec::Vec<limb::Limb>,
}
#[cfg(feature = "rsa_signing")]
impl Nonnegative {
pub fn from_be_bytes_with_bit_length(
input: untrusted::Input,
) -> Result<(Self, bits::BitLength), error::Unspecified> {
let mut limbs = vec![0; (input.len() + limb::LIMB_BYTES - 1) / limb::LIMB_BYTES];
limb::parse_big_endian_and_pad_consttime(input, &mut limbs)?;
while limbs.last() == Some(&0) {
let _ = limbs.pop();
}
let r_bits = limb::limbs_minimal_bits(&limbs);
Ok((Self { limbs }, r_bits))
}
#[inline]
pub fn is_odd(&self) -> bool {
limb::limbs_are_even_constant_time(&self.limbs) != limb::LimbMask::True
}
pub fn verify_less_than(&self, other: &Self) -> Result<(), error::Unspecified> {
if !greater_than(other, self) {
return Err(error::Unspecified);
}
Ok(())
}
pub fn to_elem<M>(&self, m: &Modulus<M>) -> Result<Elem<M, Unencoded>, error::Unspecified> {
self.verify_less_than_modulus(&m)?;
let mut r = m.zero();
r.limbs[0..self.limbs.len()].copy_from_slice(&self.limbs);
Ok(r)
}
pub fn verify_less_than_modulus<M>(&self, m: &Modulus<M>) -> Result<(), error::Unspecified> {
if self.limbs.len() > m.limbs.len() {
return Err(error::Unspecified);
}
if self.limbs.len() == m.limbs.len() {
if limb::limbs_less_than_limbs_consttime(&self.limbs, &m.limbs) != limb::LimbMask::True
{
return Err(error::Unspecified);
}
}
return Ok(());
}
}
#[cfg(feature = "rsa_signing")]
fn greater_than(a: &Nonnegative, b: &Nonnegative) -> bool {
if a.limbs.len() == b.limbs.len() {
limb::limbs_less_than_limbs_vartime(&b.limbs, &a.limbs)
} else {
a.limbs.len() > b.limbs.len()
}
}
#[derive(Clone)]
#[repr(transparent)]
struct N0([limb::Limb; 2]);
const N0_LIMBS_USED: usize = 64 / limb::LIMB_BITS;
impl From<u64> for N0 {
#[inline]
fn from(n0: u64) -> Self {
#[cfg(target_pointer_width = "64")]
{
N0([n0, 0])
}
#[cfg(target_pointer_width = "32")]
{
N0([n0 as limb::Limb, (n0 >> limb::LIMB_BITS) as limb::Limb])
}
}
}
extern "C" {
fn GFp_bn_mul_mont(
r: *mut limb::Limb, a: *const limb::Limb, b: *const limb::Limb, n: *const limb::Limb,
n0: &N0, num_limbs: c::size_t,
);
fn GFp_bn_mul_mont_check_num_limbs(num_limbs: c::size_t) -> bssl::Result;
fn GFp_bn_neg_inv_mod_r_u64(n: u64) -> u64;
fn LIMBS_shl_mod(
r: *mut limb::Limb, a: *const limb::Limb, m: *const limb::Limb, num_limbs: c::size_t,
);
}
#[cfg(feature = "rsa_signing")]
extern "C" {
fn GFp_bn_from_montgomery_in_place(
r: *mut limb::Limb, num_r: c::size_t, a: *mut limb::Limb, num_a: c::size_t,
n: *const limb::Limb, num_n: c::size_t, n0: &N0,
) -> bssl::Result;
fn GFp_BN_mod_exp_mont_consttime(
r: *mut limb::Limb, a_mont: *const limb::Limb, p: *const limb::Limb,
one_mont: *const limb::Limb, n: *const limb::Limb, num_limbs: c::size_t, n0: &N0,
) -> bssl::Result;
fn LIMBS_add_mod(
r: *mut limb::Limb, a: *const limb::Limb, b: *const limb::Limb, m: *const limb::Limb,
num_limbs: c::size_t,
);
fn LIMBS_sub_mod(
r: *mut limb::Limb, a: *const limb::Limb, b: *const limb::Limb, m: *const limb::Limb,
num_limbs: c::size_t,
);
}
#[cfg(test)]
mod tests {
use super::*;
use crate::test;
use untrusted;
struct M {}
#[cfg(feature = "rsa_signing")]
#[test]
fn test_elem_exp_consttime() {
test::from_file(
"src/rsa/bigint_elem_exp_consttime_tests.txt",
|section, test_case| {
assert_eq!(section, "");
let m = consume_modulus::<M>(test_case, "M");
let expected_result = consume_elem(test_case, "ModExp", &m);
let base = consume_elem(test_case, "A", &m);
let e = {
let bytes = test_case.consume_bytes("E");
PrivateExponent::from_be_bytes_padded(untrusted::Input::from(&bytes), &m)
.expect("valid exponent")
};
let base = into_encoded(base, &m);
let actual_result = elem_exp_consttime(base, &e, &m).unwrap();
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
#[test]
fn test_elem_exp_vartime() {
test::from_file(
"src/rsa/bigint_elem_exp_vartime_tests.txt",
|section, test_case| {
assert_eq!(section, "");
let m = consume_modulus::<M>(test_case, "M");
let expected_result = consume_elem(test_case, "ModExp", &m);
let base = consume_elem(test_case, "A", &m);
let e = consume_public_exponent(test_case, "E");
let actual_result = elem_exp_vartime(base, e, &m);
let actual_result = actual_result.into_unencoded(&m);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
#[test]
fn test_elem_mul() {
test::from_file("src/rsa/bigint_elem_mul_tests.txt", |section, test_case| {
assert_eq!(section, "");
let m = consume_modulus::<M>(test_case, "M");
let expected_result = consume_elem(test_case, "ModMul", &m);
let a = consume_elem(test_case, "A", &m);
let b = consume_elem(test_case, "B", &m);
let b = into_encoded(b, &m);
let a = into_encoded(a, &m);
let actual_result = elem_mul(&a, b, &m);
let actual_result = actual_result.into_unencoded(&m);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
})
}
#[test]
fn test_elem_squared() {
test::from_file(
"src/rsa/bigint_elem_squared_tests.txt",
|section, test_case| {
assert_eq!(section, "");
let m = consume_modulus::<M>(test_case, "M");
let expected_result = consume_elem(test_case, "ModSquare", &m);
let a = consume_elem(test_case, "A", &m);
let a = into_encoded(a, &m);
let actual_result = elem_squared(a, &m.as_partial());
let actual_result = actual_result.into_unencoded(&m);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
#[cfg(feature = "rsa_signing")]
#[test]
fn test_elem_reduced() {
test::from_file(
"src/rsa/bigint_elem_reduced_tests.txt",
|section, test_case| {
assert_eq!(section, "");
struct MM {}
unsafe impl SmallerModulus<MM> for M {}
unsafe impl NotMuchSmallerModulus<MM> for M {}
let m = consume_modulus::<M>(test_case, "M");
let expected_result = consume_elem(test_case, "R", &m);
let a =
consume_elem_unchecked::<MM>(test_case, "A", expected_result.limbs.len() * 2);
let actual_result = elem_reduced(&a, &m).unwrap();
let oneRR = m.oneRR();
let actual_result = elem_mul(oneRR.as_ref(), actual_result, &m);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
#[cfg(feature = "rsa_signing")]
#[test]
fn test_elem_reduced_once() {
test::from_file(
"src/rsa/bigint_elem_reduced_once_tests.txt",
|section, test_case| {
assert_eq!(section, "");
struct N {}
struct QQ {}
unsafe impl SmallerModulus<N> for QQ {}
unsafe impl SlightlySmallerModulus<N> for QQ {}
let qq = consume_modulus::<QQ>(test_case, "QQ");
let expected_result = consume_elem::<QQ>(test_case, "R", &qq);
let n = consume_modulus::<N>(test_case, "N");
let a = consume_elem::<N>(test_case, "A", &n);
let actual_result = elem_reduced_once(&a, &qq);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
fn consume_elem<M>(
test_case: &mut test::TestCase, name: &str, m: &Modulus<M>,
) -> Elem<M, Unencoded> {
let value = test_case.consume_bytes(name);
Elem::from_be_bytes_padded(untrusted::Input::from(&value), m).unwrap()
}
#[cfg(feature = "rsa_signing")]
fn consume_elem_unchecked<M>(
test_case: &mut test::TestCase, name: &str, num_limbs: usize,
) -> Elem<M, Unencoded> {
let value = consume_nonnegative(test_case, name);
let mut limbs = BoxedLimbs::zero(Width {
num_limbs,
m: PhantomData,
});
limbs[0..value.limbs.len()].copy_from_slice(&value.limbs);
Elem {
limbs,
encoding: PhantomData,
}
}
fn consume_modulus<M>(test_case: &mut test::TestCase, name: &str) -> Modulus<M> {
let value = test_case.consume_bytes(name);
let (value, _) =
Modulus::from_be_bytes_with_bit_length(untrusted::Input::from(&value)).unwrap();
value
}
fn consume_public_exponent(test_case: &mut test::TestCase, name: &str) -> PublicExponent {
let bytes = test_case.consume_bytes(name);
PublicExponent::from_be_bytes(untrusted::Input::from(&bytes), 3).unwrap()
}
#[cfg(feature = "rsa_signing")]
fn consume_nonnegative(test_case: &mut test::TestCase, name: &str) -> Nonnegative {
let bytes = test_case.consume_bytes(name);
let (r, _r_bits) =
Nonnegative::from_be_bytes_with_bit_length(untrusted::Input::from(&bytes)).unwrap();
r
}
fn assert_elem_eq<M, E>(a: &Elem<M, E>, b: &Elem<M, E>) {
elem_verify_equal_consttime(&a, b).unwrap()
}
fn into_encoded<M>(a: Elem<M, Unencoded>, m: &Modulus<M>) -> Elem<M, R> {
elem_mul(m.oneRR().as_ref(), a, m)
}
}