1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
//! Timer implementation. //! //! This module contains the types needed to run a timer. //! //! The [`Timer`] type runs the timer logic. It holds all the necessary state //! to track all associated [`Delay`] instances and delivering notifications //! once the deadlines are reached. //! //! The [`Handle`] type is a reference to a [`Timer`] instance. This type is //! `Clone`, `Send`, and `Sync`. This type is used to create instances of //! [`Delay`]. //! //! The [`Now`] trait describes how to get an [`Instant`] representing the //! current moment in time. [`SystemNow`] is the default implementation, where //! [`Now::now`] is implemented by calling [`Instant::now`]. //! //! [`Timer`] is generic over [`Now`]. This allows the source of time to be //! customized. This ability is especially useful in tests and any environment //! where determinism is necessary. //! //! Note, when using the Tokio runtime, the [`Timer`] does not need to be manually //! setup as the runtime comes pre-configured with a [`Timer`] instance. //! //! [`Timer`]: struct.Timer.html //! [`Handle`]: struct.Handle.html //! [`Delay`]: ../struct.Delay.html //! [`Now`]: ../clock/trait.Now.html //! [`Now::now`]: ../clock/trait.Now.html#method.now //! [`SystemNow`]: struct.SystemNow.html //! [`Instant`]: https://doc.rust-lang.org/std/time/struct.Instant.html //! [`Instant::now`]: https://doc.rust-lang.org/std/time/struct.Instant.html#method.now // This allows the usage of the old `Now` trait. #![allow(deprecated)] mod atomic_stack; mod entry; mod handle; mod now; mod registration; mod stack; use self::atomic_stack::AtomicStack; use self::entry::Entry; use self::stack::Stack; pub(crate) use self::handle::HandlePriv; pub use self::handle::{with_default, Handle}; pub use self::now::{Now, SystemNow}; pub(crate) use self::registration::Registration; use atomic::AtomicU64; use wheel; use Error; use tokio_executor::park::{Park, ParkThread, Unpark}; use std::sync::atomic::AtomicUsize; use std::sync::atomic::Ordering::SeqCst; use std::sync::Arc; use std::time::{Duration, Instant}; use std::usize; use std::{cmp, fmt}; /// Timer implementation that drives [`Delay`], [`Interval`], and [`Timeout`]. /// /// A `Timer` instance tracks the state necessary for managing time and /// notifying the [`Delay`] instances once their deadlines are reached. /// /// It is expected that a single `Timer` instance manages many individual /// [`Delay`] instances. The `Timer` implementation is thread-safe and, as such, /// is able to handle callers from across threads. /// /// Callers do not use `Timer` directly to create [`Delay`] instances. Instead, /// [`Handle`][Handle.struct] is used. A handle for the timer instance is obtained by calling /// [`handle`]. [`Handle`][Handle.struct] is the type that implements `Clone` and is `Send + /// Sync`. /// /// After creating the `Timer` instance, the caller must repeatedly call /// [`turn`]. The timer will perform no work unless [`turn`] is called /// repeatedly. /// /// The `Timer` has a resolution of one millisecond. Any unit of time that falls /// between milliseconds are rounded up to the next millisecond. /// /// When the `Timer` instance is dropped, any outstanding [`Delay`] instance that /// has not elapsed will be notified with an error. At this point, calling /// `poll` on the [`Delay`] instance will result in `Err` being returned. /// /// # Implementation /// /// `Timer` is based on the [paper by Varghese and Lauck][paper]. /// /// A hashed timing wheel is a vector of slots, where each slot handles a time /// slice. As time progresses, the timer walks over the slot for the current /// instant, and processes each entry for that slot. When the timer reaches the /// end of the wheel, it starts again at the beginning. /// /// The `Timer` implementation maintains six wheels arranged in a set of levels. /// As the levels go up, the slots of the associated wheel represent larger /// intervals of time. At each level, the wheel has 64 slots. Each slot covers a /// range of time equal to the wheel at the lower level. At level zero, each /// slot represents one millisecond of time. /// /// The wheels are: /// /// * Level 0: 64 x 1 millisecond slots. /// * Level 1: 64 x 64 millisecond slots. /// * Level 2: 64 x ~4 second slots. /// * Level 3: 64 x ~4 minute slots. /// * Level 4: 64 x ~4 hour slots. /// * Level 5: 64 x ~12 day slots. /// /// When the timer processes entries at level zero, it will notify all the /// [`Delay`] instances as their deadlines have been reached. For all higher /// levels, all entries will be redistributed across the wheel at the next level /// down. Eventually, as time progresses, entries will [`Delay`] instances will /// either be canceled (dropped) or their associated entries will reach level /// zero and be notified. /// /// [`Delay`]: ../struct.Delay.html /// [`Interval`]: ../struct.Interval.html /// [`Timeout`]: ../struct.Timeout.html /// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf /// [`handle`]: #method.handle /// [`turn`]: #method.turn /// [Handle.struct]: struct.Handle.html #[derive(Debug)] pub struct Timer<T, N = SystemNow> { /// Shared state inner: Arc<Inner>, /// Timer wheel wheel: wheel::Wheel<Stack>, /// Thread parker. The `Timer` park implementation delegates to this. park: T, /// Source of "now" instances now: N, } /// Return value from the `turn` method on `Timer`. /// /// Currently this value doesn't actually provide any functionality, but it may /// in the future give insight into what happened during `turn`. #[derive(Debug)] pub struct Turn(()); /// Timer state shared between `Timer`, `Handle`, and `Registration`. pub(crate) struct Inner { /// The instant at which the timer started running. start: Instant, /// The last published timer `elapsed` value. elapsed: AtomicU64, /// Number of active timeouts num: AtomicUsize, /// Head of the "process" linked list. process: AtomicStack, /// Unparks the timer thread. unpark: Box<Unpark>, } /// Maximum number of timeouts the system can handle concurrently. const MAX_TIMEOUTS: usize = usize::MAX >> 1; // ===== impl Timer ===== impl<T> Timer<T> where T: Park, { /// Create a new `Timer` instance that uses `park` to block the current /// thread. /// /// Once the timer has been created, a handle can be obtained using /// [`handle`]. The handle is used to create `Delay` instances. /// /// Use `default` when constructing a `Timer` using the default `park` /// instance. /// /// [`handle`]: #method.handle pub fn new(park: T) -> Self { Timer::new_with_now(park, SystemNow::new()) } } impl<T, N> Timer<T, N> { /// Returns a reference to the underlying `Park` instance. pub fn get_park(&self) -> &T { &self.park } /// Returns a mutable reference to the underlying `Park` instance. pub fn get_park_mut(&mut self) -> &mut T { &mut self.park } } impl<T, N> Timer<T, N> where T: Park, N: Now, { /// Create a new `Timer` instance that uses `park` to block the current /// thread and `now` to get the current `Instant`. /// /// Specifying the source of time is useful when testing. pub fn new_with_now(park: T, mut now: N) -> Self { let unpark = Box::new(park.unpark()); Timer { inner: Arc::new(Inner::new(now.now(), unpark)), wheel: wheel::Wheel::new(), park, now, } } /// Returns a handle to the timer. /// /// The `Handle` is how `Delay` instances are created. The `Delay` instances /// can either be created directly or the `Handle` instance can be passed to /// `with_default`, setting the timer as the default timer for the execution /// context. pub fn handle(&self) -> Handle { Handle::new(Arc::downgrade(&self.inner)) } /// Performs one iteration of the timer loop. /// /// This function must be called repeatedly in order for the `Timer` /// instance to make progress. This is where the work happens. /// /// The `Timer` will use the `Park` instance that was specified in [`new`] /// to block the current thread until the next `Delay` instance elapses. One /// call to `turn` results in at most one call to `park.park()`. /// /// # Return /// /// On success, `Ok(Turn)` is returned, where `Turn` is a placeholder type /// that currently does nothing but may, in the future, have functions add /// to provide information about the call to `turn`. /// /// If the call to `park.park()` fails, then `Err` is returned with the /// error. /// /// [`new`]: #method.new pub fn turn(&mut self, max_wait: Option<Duration>) -> Result<Turn, T::Error> { match max_wait { Some(timeout) => self.park_timeout(timeout)?, None => self.park()?, } Ok(Turn(())) } /// Converts an `Expiration` to an `Instant`. fn expiration_instant(&self, when: u64) -> Instant { self.inner.start + Duration::from_millis(when) } /// Run timer related logic fn process(&mut self) { let now = ::ms(self.now.now() - self.inner.start, ::Round::Down); let mut poll = wheel::Poll::new(now); while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) { let when = entry.when_internal().expect("invalid internal entry state"); // Fire the entry entry.fire(when); // Track that the entry has been fired entry.set_when_internal(None); } // Update the elapsed cache self.inner.elapsed.store(self.wheel.elapsed(), SeqCst); } /// Process the entry queue /// /// This handles adding and canceling timeouts. fn process_queue(&mut self) { for entry in self.inner.process.take() { match (entry.when_internal(), entry.load_state()) { (None, None) => { // Nothing to do } (Some(_), None) => { // Remove the entry self.clear_entry(&entry); } (None, Some(when)) => { // Queue the entry self.add_entry(entry, when); } (Some(_), Some(next)) => { self.clear_entry(&entry); self.add_entry(entry, next); } } } } fn clear_entry(&mut self, entry: &Arc<Entry>) { self.wheel.remove(entry, &mut ()); entry.set_when_internal(None); } /// Fire the entry if it needs to, otherwise queue it to be processed later. /// /// Returns `None` if the entry was fired. fn add_entry(&mut self, entry: Arc<Entry>, when: u64) { use wheel::InsertError; entry.set_when_internal(Some(when)); match self.wheel.insert(when, entry, &mut ()) { Ok(_) => {} Err((entry, InsertError::Elapsed)) => { // The entry's deadline has elapsed, so fire it and update the // internal state accordingly. entry.set_when_internal(None); entry.fire(when); } Err((entry, InsertError::Invalid)) => { // The entry's deadline is invalid, so error it and update the // internal state accordingly. entry.set_when_internal(None); entry.error(); } } } } impl Default for Timer<ParkThread, SystemNow> { fn default() -> Self { Timer::new(ParkThread::new()) } } impl<T, N> Park for Timer<T, N> where T: Park, N: Now, { type Unpark = T::Unpark; type Error = T::Error; fn unpark(&self) -> Self::Unpark { self.park.unpark() } fn park(&mut self) -> Result<(), Self::Error> { self.process_queue(); match self.wheel.poll_at() { Some(when) => { let now = self.now.now(); let deadline = self.expiration_instant(when); if deadline > now { self.park.park_timeout(deadline - now)?; } else { self.park.park_timeout(Duration::from_secs(0))?; } } None => { self.park.park()?; } } self.process(); Ok(()) } fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> { self.process_queue(); match self.wheel.poll_at() { Some(when) => { let now = self.now.now(); let deadline = self.expiration_instant(when); if deadline > now { self.park.park_timeout(cmp::min(deadline - now, duration))?; } else { self.park.park_timeout(Duration::from_secs(0))?; } } None => { self.park.park_timeout(duration)?; } } self.process(); Ok(()) } } impl<T, N> Drop for Timer<T, N> { fn drop(&mut self) { use std::u64; // Shutdown the stack of entries to process, preventing any new entries // from being pushed. self.inner.process.shutdown(); // Clear the wheel, using u64::MAX allows us to drain everything let mut poll = wheel::Poll::new(u64::MAX); while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) { entry.error(); } } } // ===== impl Inner ===== impl Inner { fn new(start: Instant, unpark: Box<Unpark>) -> Inner { Inner { num: AtomicUsize::new(0), elapsed: AtomicU64::new(0), process: AtomicStack::new(), start, unpark, } } fn elapsed(&self) -> u64 { self.elapsed.load(SeqCst) } /// Increment the number of active timeouts fn increment(&self) -> Result<(), Error> { let mut curr = self.num.load(SeqCst); loop { if curr == MAX_TIMEOUTS { return Err(Error::at_capacity()); } let actual = self.num.compare_and_swap(curr, curr + 1, SeqCst); if curr == actual { return Ok(()); } curr = actual; } } /// Decrement the number of active timeouts fn decrement(&self) { let prev = self.num.fetch_sub(1, SeqCst); debug_assert!(prev <= MAX_TIMEOUTS); } fn queue(&self, entry: &Arc<Entry>) -> Result<(), Error> { if self.process.push(entry)? { // The timer is notified so that it can process the timeout self.unpark.unpark(); } Ok(()) } fn normalize_deadline(&self, deadline: Instant) -> u64 { if deadline < self.start { return 0; } ::ms(deadline - self.start, ::Round::Up) } } impl fmt::Debug for Inner { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_struct("Inner").finish() } }