1.0.0[−][src]Trait tokio::prelude::Write
A trait for objects which are byte-oriented sinks.
Implementors of the Write
trait are sometimes called 'writers'.
Writers are defined by two required methods, write
and flush
:
-
The
write
method will attempt to write some data into the object, returning how many bytes were successfully written. -
The
flush
method is useful for adaptors and explicit buffers themselves for ensuring that all buffered data has been pushed out to the 'true sink'.
Writers are intended to be composable with one another. Many implementors
throughout std::io
take and provide types which implement the Write
trait.
Examples
use std::io::prelude::*; use std::fs::File; fn main() -> std::io::Result<()> { let data = b"some bytes"; let mut pos = 0; let mut buffer = File::create("foo.txt")?; while pos < data.len() { let bytes_written = buffer.write(&data[pos..])?; pos += bytes_written; } Ok(()) }
The trait also provides convenience methods like write_all
, which calls
write
in a loop until its entire input has been written.
Required methods
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
Write a buffer into this writer, returning how many bytes were written.
This function will attempt to write the entire contents of buf
, but
the entire write may not succeed, or the write may also generate an
error. A call to write
represents at most one attempt to write to
any wrapped object.
Calls to write
are not guaranteed to block waiting for data to be
written, and a write which would otherwise block can be indicated through
an Err
variant.
If the return value is Ok(n)
then it must be guaranteed that
0 <= n <= buf.len()
. A return value of 0
typically means that the
underlying object is no longer able to accept bytes and will likely not
be able to in the future as well, or that the buffer provided is empty.
Errors
Each call to write
may generate an I/O error indicating that the
operation could not be completed. If an error is returned then no bytes
in the buffer were written to this writer.
It is not considered an error if the entire buffer could not be written to this writer.
An error of the ErrorKind::Interrupted
kind is non-fatal and the
write operation should be retried if there is nothing else to do.
Examples
use std::io::prelude::*; use std::fs::File; fn main() -> std::io::Result<()> { let mut buffer = File::create("foo.txt")?; // Writes some prefix of the byte string, not necessarily all of it. buffer.write(b"some bytes")?; Ok(()) }
fn flush(&mut self) -> Result<(), Error>
Flush this output stream, ensuring that all intermediately buffered contents reach their destination.
Errors
It is considered an error if not all bytes could be written due to I/O errors or EOF being reached.
Examples
use std::io::prelude::*; use std::io::BufWriter; use std::fs::File; fn main() -> std::io::Result<()> { let mut buffer = BufWriter::new(File::create("foo.txt")?); buffer.write_all(b"some bytes")?; buffer.flush()?; Ok(()) }
Provided methods
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
1.36.0
Like write
, except that it writes from a slice of buffers.
Data is copied to from each buffer in order, with the final buffer
read from possibly being only partially consumed. This method must
behave as a call to write
with the buffers concatenated would.
The default implementation calls write
with either the first nonempty
buffer provided, or an empty one if none exists.
fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>
Attempts to write an entire buffer into this writer.
This method will continuously call write
until there is no more data
to be written or an error of non-ErrorKind::Interrupted
kind is
returned. This method will not return until the entire buffer has been
successfully written or such an error occurs. The first error that is
not of ErrorKind::Interrupted
kind generated from this method will be
returned.
Errors
This function will return the first error of
non-ErrorKind::Interrupted
kind that write
returns.
Examples
use std::io::prelude::*; use std::fs::File; fn main() -> std::io::Result<()> { let mut buffer = File::create("foo.txt")?; buffer.write_all(b"some bytes")?; Ok(()) }
fn write_fmt(&mut self, fmt: Arguments) -> Result<(), Error>
Writes a formatted string into this writer, returning any error encountered.
This method is primarily used to interface with the
format_args!
macro, but it is rare that this should
explicitly be called. The write!
macro should be favored to
invoke this method instead.
This function internally uses the write_all
method on
this trait and hence will continuously write data so long as no errors
are received. This also means that partial writes are not indicated in
this signature.
Errors
This function will return any I/O error reported while formatting.
Examples
use std::io::prelude::*; use std::fs::File; fn main() -> std::io::Result<()> { let mut buffer = File::create("foo.txt")?; // this call write!(buffer, "{:.*}", 2, 1.234567)?; // turns into this: buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?; Ok(()) }
ⓘImportant traits for &'_ mut Rfn by_ref(&mut self) -> &mut Self
Creates a "by reference" adaptor for this instance of Write
.
The returned adaptor also implements Write
and will simply borrow this
current writer.
Examples
use std::io::Write; use std::fs::File; fn main() -> std::io::Result<()> { let mut buffer = File::create("foo.txt")?; let reference = buffer.by_ref(); // we can use reference just like our original buffer reference.write_all(b"some bytes")?; Ok(()) }
Implementations on Foreign Types
impl Write for TcpStream
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl Write for Cursor<Box<[u8]>>
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl Write for Vec<u8>
[src]
Write is implemented for Vec<u8>
by appending to the vector.
The vector will grow as needed.
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl Write for Sink
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<W> Write for Box<W> where
W: Write + ?Sized,
[src]
W: Write + ?Sized,
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>
[src]
fn write_fmt(&mut self, fmt: Arguments) -> Result<(), Error>
[src]
impl<'_> Write for StdoutLock<'_>
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<W> Write for LineWriter<W> where
W: Write,
[src]
W: Write,
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<'_> Write for &'_ File
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<'_> Write for &'_ TcpStream
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<'_> Write for Cursor<&'_ mut Vec<u8>>
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<'a> Write for &'a UnixStream
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl Write for ChildStdin
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<'_, W> Write for &'_ mut W where
W: Write + ?Sized,
[src]
W: Write + ?Sized,
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>
[src]
fn write_fmt(&mut self, fmt: Arguments) -> Result<(), Error>
[src]
impl Write for UnixStream
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl Write for Cursor<Vec<u8>>
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<'_> Write for &'_ mut [u8]
[src]
Write is implemented for &mut [u8]
by copying into the slice, overwriting
its data.
Note that writing updates the slice to point to the yet unwritten part. The slice will be empty when it has been completely overwritten.
fn write(&mut self, data: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn write_all(&mut self, data: &[u8]) -> Result<(), Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<W> Write for BufWriter<W> where
W: Write,
[src]
W: Write,
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl Write for Stdout
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>
[src]
fn write_fmt(&mut self, args: Arguments) -> Result<(), Error>
[src]
impl<'_> Write for StderrLock<'_>
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl Write for Stderr
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>
[src]
fn write_fmt(&mut self, args: Arguments) -> Result<(), Error>
[src]
impl Write for File
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<'_> Write for Cursor<&'_ mut [u8]>
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_vectored(&mut self, bufs: &[IoSlice]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<B> Write for Writer<B> where
B: BufMut,
[src]
B: BufMut,
fn write(&mut self, src: &[u8]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<L, R> Write for Either<L, R> where
L: Write,
R: Write,
[src]
L: Write,
R: Write,
Either<L, R>
implements Write
if both L
and R
do.
Requires crate feature "use_std"
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl Write for TcpStream
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<'a> Write for &'a TcpStream
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<T> Write for AllowStdIo<T> where
T: Write,
[src]
T: Write,
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>
[src]
fn write_fmt(&mut self, fmt: Arguments) -> Result<(), Error>
[src]
impl<A> Write for SmallVec<A> where
A: Array<Item = u8>,
[src]
A: Array<Item = u8>,
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
Implementors
impl Write for tokio::net::tcp::TcpStream
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<'a> Write for &'a tokio::net::tcp::TcpStream
[src]
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<'a, E> Write for &'a PollEvented<E> where
E: Evented,
&'a E: Write,
[src]
E: Evented,
&'a E: Write,
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<E> Write for PollEvented<E> where
E: Evented + Write,
[src]
E: Evented + Write,
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>
[src]
fn flush(&mut self) -> Result<(), Error>
[src]
impl<T> Write for WriteHalf<T> where
T: AsyncWrite,
[src]
T: AsyncWrite,